
1

Analysis of STAR-RIS Assisted Downlink CoMP-NOMA Multi-Cell
Networks under Nakagami-𝑚 Fading

Muhammad Umer , Muhammad Ahmed Mohsin , Mikael Gidlund , Senior Member, IEEE
Haejoon Jung , Senior Member, IEEE, and Syed Ali Hassan , Senior Member, IEEE

Abstract—In this letter, we conduct a thorough analytical
assessment of a simultaneously transmitting and reflecting
reconfigurable intelligent surface (STAR-RIS) assisted non-
orthogonal multiple access (NOMA) enhanced coordinated
multipoint (CoMP) multi-cell network under Nakagami-𝑚
fading. Using the central limit theorem (CLT) and moment-
matching based Gamma approximation method, we derive
the distributions of effective and cascaded channel gains.
Subsequently, leveraging these results, we formulate tractable
equations for ergodic rates and outage probabilities across all
users in the network. Our analytical results correlate with
the simulation results, affirming the efficacy of analytical
methodology. Furthermore, the results demonstrate a signifi-
cant performance improvement of STAR-RIS assisted CoMP-
NOMA networks compared to conventional systems.

Index Terms—STAR-RIS, CoMP, NOMA, Nakagami-𝑚 fad-
ing, ergodic rate, outage probability, Gamma approximation.

I. Introduction

FOR Beyond 5G (B5G) and sixth generation (6G) wireless
networks, reconfigurable intelligent surface (RIS) has

garnered substantial attention as a prominent solution for en-
hancing both coverage area and network capacity. Comprised
of an array of passive elements, these metasurfaces reflect
and transmit incident waves, enhancing the efficiency of
wireless signal propagation over an expanded network range.
Nonetheless, an inherent limitation of RIS lies in the half-
space problem, which results in inadequate signal coverage
and degraded performance. Simultaneously transmitting and
reflecting (STAR) reconfigurable intelligent surfaces (RIS) can
extend the coverage of impinging signals by providing a
virtual line-of-sight (vLOS) path to both sides of the meta-
surface, effectively resolving the half-space problem [1].

Recent studies have shown a growing interest in com-
bining RIS with non-orthogonal multiple access (NOMA).
NOMA allows multiple users to operate on shared time-
frequeny resources, enhancing spectral efficiency and mini-
mizing network latency [2]. Intending to enhance the perfor-
mance of multi-cell networks, the integration of coordinated
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multipoint (CoMP) and NOMA received significant atten-
tion [3]. The potential benefits of integrating NOMA, CoMP,
and RIS were initially explored in [4]. Another study [5] in-
vestigated power allocation and user clustering optimization
for CoMP-NOMA networks with RIS, while a group-level
successive interference cancellation (SIC) scheme for uplink
RIS-assisted CoMP-NOMA networks was proposed in [6].
Most of the previous works suffer from the half-space

problem, which limits the coverage area of the RIS and thus
rely on optimal placement strategies. The authors in [7]
explored the incorporation of STAR-RIS in CoMP-NOMA
networks and proposed a joint signal enhancement and inter-
ference cancellation scheme. However, the separability of the
STAR-RIS elements to serve users belonging to different cells
was not considered. Furthermore, an analytical framework
to quantify STAR-RIS aided networks is still lacking. To
tackle this issue, this letter proposes a tractable analytical
framework to evaluate the performance of STAR-RIS assisted
CoMP-NOMA networks. First, we use method of moments
(MoM) to approximate the effective and cascaded channel
gains as Gamma random variables (RVs). Then, tractable
expressions for ergodic rate and outage probability are de-
rived for each user. Finally, numerical results are presented
to validate the analytical framework and demonstrate the
performance gains of STAR-RIS assisted CoMP-NOMA.

II. System Model
As shown in Fig. 1, we consider a multi-cell STAR-RIS

assisted CoMP-NOMA network, in which each base station
(BS) serves a NOMA pair consisting of its corresponding
center and edge users. Consequently, the edge user is part of
two NOMA pairs, each served by a different BS. We define the
following index sets: I = {1, 2} for the BSs, C𝑖 = {1, 2, . . . ,𝐶𝑖 }
for the cell-center users of BS𝑖 , and F = {1, 2, . . . , 𝐹 } for the
cell-edge users. Furthermore, let U = 𝑖∈I C𝑖 ∪ F denote the
set of all system users. For ease of exposition, we assume
𝐶𝑖 = 1 ∀𝑖 ∈ I, and 𝐹 = 1, implying a single cell-center user
U𝑐𝑖 per BS𝑖 and a single cell-edge user U𝑓 .
STAR-RIS 𝑅 comprises 𝐾 elements and the vector K𝑖𝑅 rep-

resents the elements assigned to BS𝑖 . In the proposed system
model, ∀𝑖 ∈ I, and ∀𝑢 ∈ U, we assume a line-of-sight (LOS)
path for links BS𝑖 − 𝑅, 𝑅 − U𝑢 , and non-line-of-sight (nLOS)
path for link BS𝑖−U𝑢 . Furthermore, all LOS links are captured
by Nakagami-𝑚 fading1, i.e., ℎ𝑖,𝑅 ∼ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (𝑚𝑖,𝑅,Ω𝑖,𝑅),
and ℎ𝑅,𝑢 ∼ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (𝑚𝑅,𝑢,Ω𝑅,𝑢). Due to the double fading
channel, we neglect the impact of the reflected interference

1Adopting Nakagami distributions with varying 𝑚 parameters enables
versatile representation of fading channels. For instance, setting 𝑚 = 1
corresponds to modeling Rayleigh fading channels, enhancing the practical
applicability of the network.
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Fig. 1: An illustration of STAR-RIS-aided coordinated NOMA cluster.

link on the performance of cell-center users. The nLOS links
are captured by Rayleigh fading, expressed as a special case
of Nakagami-𝑚 distribution; ℎ𝑖,𝑢 ∼ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (1,Ω𝑖,𝑢).

The signal received at U𝑢 , ∀𝑢 ∈ U, can be expressed as

𝑦𝑢 = 𝐻𝑖,𝑢𝑥𝑖 + 𝐻𝑖′,𝑢𝑥𝑖′ + 𝑁𝑜 , (1)

where 𝑖′ ∈ I \ {𝑖}, 𝑁𝑜 is additive white Gaussian noise
(AWGN), i.e., 𝑁𝑜 ∼ CN(0, 𝜎2), 𝑥𝑖 =

√︁
𝜁𝑖,𝑐𝑃𝑡𝑥𝑖,𝑐 +

√︁
𝜁𝑖,𝑓 𝑃𝑡𝑥 𝑓

is the superimposed signal broadcasted by BS𝑖 , 𝜁𝑖,𝑐 and 𝜁𝑖,𝑓
are the power allocation (PA) factors assigned by BS𝑖 to
users U𝑐𝑖 and U𝑓 , respectively, and 𝑃𝑡 is the total transmit
power of each BS. Moreover, 𝐻𝑖,𝑢 = ℎ𝑖,𝑢 + hH

R,uΦnhi,R denotes
the effective channel from BS𝑖 to U𝑢 , where 𝑛 = 𝑡 if
𝑢 ∈ C𝑖 and 𝑛 = 𝑟 if 𝑢 ∈ F , representing the transmis-
sion and reflection regions of the STAR-RIS. Futhermore,
the transmission and reflection coefficient matrices of 𝑅
are expressed as Φr =

√︁
𝛽𝑟diag(𝑒𝑡 𝑗𝜙𝑡1, 𝑒 𝑗𝜙

𝑡
2 , . . . , 𝑒 𝑗𝜙

𝑡
𝐾 ) and

Φt =
√︁
𝛽𝑡diag(𝑒 𝑗𝜙𝑟1 , 𝑒 𝑗𝜙𝑟2 , . . . , 𝑒 𝑗𝜙𝑟𝐾 ), respectively, where 𝛽𝑡 ,

𝛽𝑟 ∈ [0, 1] are the amplitude adjustments, satisfying 𝛽𝑡 +𝛽𝑟 =
1, and 𝜙𝑡𝑘 , 𝜙𝑟𝑘 ∈ [0, 2𝜋), ∀𝑘 ∈ K ≜ {1, 2, . . . , 𝐾}. With the as-
sumption that the perfect CSI is available, the optimal phase
shifts can be calculated as 𝜙𝑛𝑘 = mod[arg(ℎ𝑖,𝑢) − arg(ℎ𝑖,𝑅 ·
ℎ𝑅,𝑢), 2𝜋], which allows us to rewrite the magnitude of the
effective channel as |𝐻𝑖,𝑢 | = ( |ℎ𝑖,𝑢 | +

√︁
𝛽𝑛
∑𝐾

𝑘=1 |ℎ𝑅,𝑢 | |ℎ𝑖,𝑅 |).
Following the principle of NOMA, the strong user, U𝑐𝑖 , first

decodes U𝑓 ’s signal and then decodes its own using SIC. The
signal-to-interference-plus-noise ratio (SINR) at U𝑐𝑖 for these
two processes can be expressed as

𝛾𝑖,𝑐→𝑓 =
𝜁𝑖,𝑓 𝜌

∣∣𝐻𝑖,𝑐 ∣∣2
𝜁𝑖,𝑐𝜌

∣∣𝐻𝑖,𝑐 ∣∣2 + 𝜌∣∣ℎ𝑖′,𝑐 ∣∣2 + 1
, (2)

and

𝛾𝑖,𝑐 = 𝜁𝑖,𝑐
𝜌
∣∣𝐻𝑖,𝑐 ∣∣2

𝜌
∣∣ℎ𝑖′,𝑐 ∣∣2 + 1

, (3)

where 𝜌 = 𝑃𝑡/𝜎2 is the transmit SNR of each BS. Unlike
U𝑐𝑖 , U𝑓 decodes its own signal directly, and considering non-
coherent JT-CoMP, the SINR at U𝑓 can be expressed as [8]

𝛾𝑓 =
𝜁𝑖,𝑓 𝜌

∣∣𝐻𝑖,𝑓 ∣∣2 + 𝜁𝑖′,𝑓 𝜌∣∣𝐻𝑖′,𝑓 ∣∣2
𝜁𝑖,𝑐𝜌

∣∣𝐻𝑖,𝑓 ∣∣2 + 𝜁𝑖′,𝑐𝜌∣∣𝐻𝑖′,𝑓 ∣∣2 + 1
. (4)

III. End-to-End SINR Statistics
A. Effective Channel Characterization

Let 𝑍𝑖,𝑢 = |𝐻𝑖,𝑢 |2 = ( |ℎ𝑖,𝑢 | +
√︁
𝛽𝑛
∑𝐾

𝑘=1 |ℎ𝑅,𝑢 | |ℎ𝑖,𝑅 |)2 be the
effective channel gain from BS𝑖 to U𝑢 . The following lemma

characterizes the distribution of 𝑍𝑖,𝑢 .

Lemma 1. Assuming K, the number of elements in STAR-RIS,
is large enough,2 and by applying MoM, the distribution of 𝑍𝑖,𝑢
is approximated as a Gamma distribution, 𝑍𝑖,𝑢 ∼ Γ

(
𝑘𝑍𝑖,𝑢 , 𝜃𝑍𝑖,𝑢

)
,

with the following probability density function (PDF).

𝑓𝑍𝑖,𝑢 (𝑥) =
𝑥
𝑘𝑍𝑖,𝑢 −1𝑒

− 𝑥
𝜃𝑍𝑖,𝑢

𝜃
𝑘𝑍𝑖,𝑢
𝑍𝑖,𝑢

Γ
(
𝑘𝑍𝑖,𝑢

) , 𝑥 > 0, (5)

where 𝑘𝑍𝑖,𝑢 =
𝜇2
𝑍𝑖,𝑢

𝜇
(2)
𝑍𝑖,𝑢

−𝜇2
𝑍𝑖,𝑢

and 𝜃𝑍𝑖,𝑢 =
𝜇
(2)
𝑍𝑖,𝑢

−𝜇2
𝑍𝑖,𝑢

𝜇𝑍𝑖,𝑢
are the

shape and scale parameters of the Gamma distribution, with

𝜇𝑍𝑖,𝑢 =
2𝐾
√
𝛽Ω𝑖𝑢Ω𝑖𝑅Ω𝑅𝑢 Γ𝑚 ( 1

2 ,
1
2 ,

1
2 )√

𝑚𝑖𝑅𝑚𝑅𝑢𝑚𝑖𝑢
+ 𝛽𝐾2Ω𝑖𝑅Ω𝑅𝑢 + Ω𝑖𝑢 and

𝜇
(2)
𝑍𝑖,𝑢

=
4𝛽3/2𝐾3√Ω𝑖𝑢 (Ω𝑖𝑅Ω𝑅𝑢 )3/2 Γ𝑚 ( 1

2 ,
3
2 ,

3
2 )√

𝑚𝑖𝑢 (𝑚𝑖𝑅𝑚𝑅𝑢 )3/2 + 6𝛽𝐾2Ω𝑖𝑅Ω𝑖𝑢Ω𝑅𝑢 +
4𝐾Ω3/2

𝑖𝑢

√
𝛽Ω𝑖𝑅Ω𝑅𝑢 Γ𝑚 ( 3

2 ,
1
2 ,

1
2 )√

𝑚𝑖𝑅𝑚𝑅𝑢𝑚
3/2
𝑖𝑢

+ 𝛽2𝐾4Ω2
𝑖𝑅

(𝑚𝑖𝑅+1) (𝑚𝑅𝑢+1)Ω2
𝑅𝑢

𝑚𝑖𝑅𝑚𝑅𝑢
+ (𝑚𝑖𝑢+1)Ω2

𝑖𝑢

𝑚𝑖𝑢

as the first and second moment of 𝑍𝑖,𝑢 , respectively, and
Γ𝑚 (𝑎, 𝑏, 𝑐) = Γ (𝑚𝑖𝑢 +𝑎)Γ (𝑚𝑖𝑅 +𝑏 )Γ (𝑚𝑅𝑢 +𝑐 )

Γ (𝑚𝑖𝑢 )Γ (𝑚𝑖𝑅 )Γ (𝑚𝑅𝑢 ) .

Proof. For brevity, let the combined channel be 𝐺𝑖,𝑢 =√︁
𝛽𝑛
∑𝐾

𝑘=1 |ℎ𝑅,𝑢 | |ℎ𝑖,𝑅 |. By applying CLT, and noting that
it is a scaled double-Nakagami RV, the distribution
of 𝐺𝑖,𝑢 can be approximated as a Gamma distribu-

tion, 𝐺𝑖,𝑢 ∼ Γ

(
𝜇2
𝐺𝑖,𝑢

𝜇
(2)
𝐺𝑖,𝑢

−𝜇2
𝐺𝑖,𝑢

,
𝜇
(2)
𝐺𝑖,𝑢

−𝜇2
𝐺𝑖,𝑢

𝜇𝐺𝑖,𝑢

)
, where 𝜇𝐺𝑖,𝑢 and

𝜇
(2)
𝐺𝑖,𝑢

are the first and second moments of 𝐺𝑖,𝑢 , re-
spectively, with the 𝑝-th moment of 𝐺𝑖,𝑢 given by [9]

𝜇
(𝑝 )
𝐺𝑖,𝑢

=
(𝐾
√
𝛽𝑛 )𝑝 (Ω𝑖𝑅Ω𝑅𝑢 )𝑝/2 Γ

(
𝑚𝑅𝑢+ 𝑝2

)
Γ
(
𝑚𝑖𝑅+ 𝑝2

)
(𝑚𝑅𝑢𝑚𝑖𝑅 )𝑝/2 Γ (𝑚𝑖𝑅 )Γ (𝑚𝑅𝑢 ) , and as |ℎ𝑖,𝑢 | ∼

𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (𝑚𝑖,𝑢,Ω𝑖,𝑢), the 𝑝-th moments are known to be

given by 𝜇
(𝑝 )
|ℎ𝑖,𝑢 | =

Γ
(
𝑚𝑖𝑢+ 𝑝2

)
Ω𝑖𝑢

𝑝/2

Γ (𝑚𝑖𝑢 )𝑚𝑖𝑢𝑝/2 . Since |ℎ𝑖,𝑢 | and 𝐺𝑖,𝑢 are
independent, the 𝑝-th moment of |𝐻𝑖,𝑢 | can be obtained via
the moments of its summands, i.e., |ℎ𝑖,𝑢 | and 𝐺𝑖,𝑢 , by applying
the binomial theorem. Hence, the 𝑝-th moment of |𝐻𝑖,𝑢 | is
given by

𝜇
(𝑝 )
|𝐻𝑖,𝑢 | =

𝑝∑︁
𝑞=0

(
𝑝

𝑞

)
𝜇
(𝑞)
|ℎ𝑖,𝑢 |𝜇

(𝑝−𝑞)
𝐺𝑖,𝑢

. (6)

Knowing that only the first two moments of 𝑍𝑖,𝑢 , 𝜇𝑍𝑖,𝑢 =

𝜇
(2)
|𝐻𝑖,𝑢 | and 𝜇

(2)
𝑍𝑖,𝑢

= 𝜇
(4)
|𝐻𝑖,𝑢 | , are necessary to approximate its

distribution as a Gamma distribution, the first two moments
of 𝑍𝑖,𝑢 are, therefore, given by

𝜇𝑍𝑖,𝑢 = 𝜇
(2)
|ℎ𝑖,𝑢 | + 2𝜇 |ℎ𝑖,𝑢 |𝜇𝐺𝑖,𝑢 + 𝜇

(2)
𝐺𝑖,𝑢

, (7)

𝜇
(2)
𝑍𝑖,𝑢

= 𝜇
(4)
|ℎ𝑖,𝑢 | + 4𝜇 (3)|ℎ𝑖,𝑢 |𝜇𝐺𝑖,𝑢 + 6𝜇 (2)|ℎ𝑖,𝑢 |𝜇

(2)
𝐺𝑖,𝑢

+ 4𝜇 |ℎ𝑖,𝑢 |𝜇
(3)
𝐺𝑖,𝑢

+ 𝜇 (4)𝐺𝑖,𝑢
. (8)

The final expression of moments can thus be obtained
through the means of substitution in (7) and (8). ■

Note that even in the absence of a direct link, i.e., |ℎ𝑖,𝑢 | = 0,
the effective channel 𝑍𝑖,𝑢 is still Gamma distributed, and the
rest of the analysis remains valid.

2CLT and MoM become particularly applicable and yield near accurate
results when the number of elements is substantially large (𝐾 >> 1). This
allows for a reliable approximation of the distribution of the variable in
question, enhancing the robustness of the statistical analysis.
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We proceed to derive the distribution of the sum of a
Gamma RV and the square of a Nakagami-𝑚 RV each with
different shape and scale parameters, further weighted by
different constant terms, i.e., path loss and power allocation
factors. The details of the derivation are presented in the
following lemma.

Lemma 2. Let B (𝑎,𝑏 )
𝑖,𝑢 = 𝑎𝑍𝑖,𝑢 + 𝑏 |ℎ𝑖′,𝑢 |2, where 𝑎, 𝑏 ∈ R+,

𝑖′ ∈ I \ {𝑖}, then the distribution of B (𝑎,𝑏 )
𝑖,𝑢 is approximated

as a Gamma distribution, B (𝑎,𝑏 )
𝑖,𝑢 ∼ Γ

(
𝑘B (𝑎,𝑏)

𝑖,𝑢

, 𝜃B (𝑎,𝑏)
𝑖,𝑢

)
, with the

following PDF:

𝑓B (𝑎,𝑏)
𝑖,𝑢

(𝑥) = 𝑥
𝑘
B(𝑎,𝑏)
𝑖,𝑢

−1
𝑒

− 𝑥
𝜃
B(𝑎,𝑏)
𝑖,𝑢

𝜃B (𝑎,𝑏)
𝑖,𝑢

Γ
(
𝑘B (𝑎,𝑏)

𝑖,𝑢

) , 𝑥 > 0, (9)

where 𝑘B (𝑎,𝑏)
𝑖,𝑢

=

𝜇2
B(𝑎,𝑏)
𝑖,𝑢

𝜇
(2)
B (𝑎,𝑏)
𝑖,𝑢

−𝜇2
B(𝑎,𝑏)
𝑖,𝑢

and 𝜃B (𝑎,𝑏)
𝑖,𝑢

=

𝜇
(2)
B (𝑎,𝑏)
𝑖,𝑢

−𝜇2
B(𝑎,𝑏)
𝑖,𝑢

𝜇
B(𝑎,𝑏)
𝑖,𝑢

, with

𝜇B (𝑎,𝑏)
𝑖,𝑢

= 𝑎𝜇𝑍𝑖,𝑢 + 𝑏Ω𝑖,𝑢 and 𝜇
(2)
B (𝑎,𝑏)
𝑖,𝑢

= 𝑎2𝜇 (2)𝑍𝑖,𝑢
+ 2𝑎𝑏𝜇𝑍𝑖,𝑢Ω𝑖,𝑢 +

𝑏2Ω2
𝑖,𝑢 (1 + 1

𝑚𝑖,𝑢
) as the first and second moments of B (𝑎,𝑏 )

𝑖,𝑢 ,
respectively.

Proof. As |ℎ𝑖′,𝑢 | ∼ 𝑁𝑎𝑘𝑎𝑔𝑎𝑚𝑖 (𝑚𝑖′,𝑢,Ω𝑖′,𝑢), the square of
|ℎ𝑖′,𝑢 | is known to be Gamma distributed, i.e., |ℎ𝑖′,𝑢 |2 ∼
Γ
(
𝑘𝑖′,𝑢, 𝜃𝑖′,𝑢

)
, where 𝑘𝑖′,𝑢 = 𝑚𝑖′,𝑢 and 𝜃𝑖′,𝑢 =

Ω𝑖′,𝑢
𝑚𝑖′,𝑢

are
the shape and scale parameters of the Gamma distribution,
respectively. Further, by using the scaling property of Gamma
distribution, i.e., 𝑋 ∼ Γ (𝑘, 𝜃 ) =⇒ 𝑎𝑋 ∼ Γ (𝑘, 𝑎𝜃 ), the first
and second moments of 𝑎𝑍𝑖,𝑢 are given by 𝜇𝑎𝑍𝑖,𝑢 = 𝑎𝜇𝑍𝑖,𝑢
and 𝜇 (2)𝑎𝑍𝑖,𝑢

= 𝑎2𝜇 (2)𝑍𝑖,𝑢
, respectively. Finally, the first and second

moments of B (𝑎,𝑏 )
𝑖,𝑢 can be obtained by applying the binomial

theorem in (6) and substituting the respective moments. ■

B. Probability Density Functions of SINRs

Lemma 3. The PDF of the SINR at U𝑐𝑖 to decode the signal of
U𝑓 , i.e., 𝛾𝑖,𝑐→𝑓 , is given by

𝑓𝛾𝑖,𝑐→𝑓 (𝑥) =
𝜃W𝑖,𝑐,𝑓

(
𝑥𝜃W𝑖,𝑐,𝑓
𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐

)𝛼𝑖,𝑐 ( 𝑥𝜃W𝑖,𝑐,𝑓
𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐

+ 1
)𝜈𝑖,𝑐→𝑓

𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐𝐵(𝑘𝑍𝑖,𝑐 , 𝑘W𝑖,𝑐,𝑓
) , (10)

for 𝑥 > 0, where 𝛼𝑖,𝑐 = 𝑘𝑍𝑖,𝑐 − 1, 𝜈𝑖,𝑐→𝑓 = −(𝑘𝑍𝑖,𝑐 + 𝑘W𝑖,𝑐,𝑓
),

𝐵 (· , ·) is the Euler Beta function, 𝑘W𝑖,𝑐,𝑓
=

𝜇2W𝑖,𝑐,𝑓

𝜇
(2)
W𝑖,𝑐,𝑓

−𝜇2W𝑖,𝑐,𝑓
, and

𝜃W𝑖,𝑐,𝑓
=

𝜇
(2)
W𝑖,𝑐,𝑓

−𝜇2W𝑖,𝑐,𝑓
𝜇W𝑖,𝑐,𝑓

, with 𝜇W𝑖,𝑐,𝑓
= 𝜇B (𝜌𝜁𝑖,𝑐 , 𝜌 )

𝑖,𝑐

+1 and 𝜇 (2)W𝑖,𝑐,𝑓
=

𝜇
(2)
B (𝜌𝜁𝑖,𝑐 , 𝜌 )
𝑖,𝑐

+ 2𝜇B (𝜌𝜁𝑖,𝑐 , 𝜌 )
𝑖,𝑐

+ 1.

Proof. The expression in (2) can be rewritten as 𝛾𝑖,𝑐→𝑓 =
𝜌𝜁𝑖,𝑓 𝑍𝑖,𝑐

W𝑖,𝑐,𝑓
, where W𝑖,𝑐,𝑓 = B (𝜌𝜁𝑖,𝑐 , 𝜌 )

𝑖,𝑐 + 1, with 𝑍𝑖,𝑐 and B (𝜌𝜁𝑖,𝑐 , 𝜌 )
𝑖,𝑐

both being Gamma RVs based on the statistics derived
in Lemmas 1 and 2, respectively. Then, the distribution of
W𝑖,𝑐,𝑓 can also be approximated by an equivalent Gamma
RV, i.e., W𝑖,𝑐,𝑓 ∼ Γ

(
𝑘W𝑖,𝑐,𝑓

, 𝜃W𝑖,𝑐,𝑓

)
. As 𝑍𝑖,𝑐 and W𝑖,𝑐,𝑓 are

two independent Gamma RVs, the ratio of two Gamma RVs
is known to follow a Beta prime distribution, i.e., 𝜌𝜁𝑖,𝑓 𝑍𝑖,𝑐W𝑖,𝑐,𝑓

∼

(a) The PDF of 𝛾𝑖,𝑐 (b) The PDF of 𝛾𝑖,𝑐→𝑓 (c) The PDF of 𝛾𝑓

(d) The CDF of 𝛾𝑖,𝑐 (e) The CDF of 𝛾𝑖,𝑐→𝑓 (f) The CDF of 𝛾𝑓

Fig. 2: The PDFs and CDFs of the SINRs at the center and edge user, with
𝐾 = 34 elements, 𝑚𝑖,𝑢 = 𝑚𝑖′,𝑢 = 1, and 𝑚𝑖,𝑅 = 𝑚𝑅,𝑢 = 2, ∀𝑖 ∈ I, 𝑖′ ∈
I \ {𝑖 }, ∀𝑢 ∈ U.

𝛽 ′
(
𝑘𝑍𝑖,𝑐 , 𝑘W𝑖,𝑐,𝑓

, 1, 𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐 /𝜃W𝑖,𝑐,𝑓

)
, corresponding to the PDF

in (11). ■

Corollary 1. As 𝛾𝑖,𝑐→𝑓 and 𝛾𝑖,𝑐 are closely related, differing
only by weighting constants, the PDF of 𝛾𝑖,𝑐 is given by

𝑓𝛾𝑖,𝑐 (𝑥) =
𝜃W𝑖,𝑐

(
𝑥𝜃W𝑖,𝑐
𝜌𝜁𝑖,𝑐𝜃𝑍𝑖,𝑐

)𝛼𝑖,𝑐 (
𝑥𝜃W𝑖,𝑐
𝜌𝜁𝑖,𝑐𝜃𝑍𝑖,𝑐

+ 1
)𝜈𝑖,𝑐

𝜌𝜁𝑖,𝑐𝜃𝑍𝑖,𝑐𝐵(𝑘𝑍𝑖,𝑐 , 𝑘W𝑖,𝑐
) , 𝑥 > 0, (11)

where 𝜈𝑖,𝑐 = −(𝑘𝑍𝑖,𝑐 + 𝑘W𝑖,𝑐
), 𝑘W𝑖,𝑐

=
𝜇2W𝑖,𝑐

𝜇
(2)
W𝑖,𝑐

−𝜇2W𝑖,𝑐
, and 𝜃W𝑖,𝑐

=

𝜇
(2)
W𝑖,𝑐

−𝜇2W𝑖,𝑐
𝜇W𝑖,𝑐

, with 𝜇W𝑖,𝑐
= 𝜇B (0, 𝜌 )

𝑖,𝑐

+ 1 and 𝜇
(2)
W𝑖,𝑐

= 𝜇
(2)
B (0, 𝜌 )
𝑖,𝑐

+

2𝜇B (0, 𝜌 )
𝑖,𝑐

+1 as the first and second moment of W𝑖,𝑐 = B (0, 𝜌 )
𝑖,𝑐 +1,

respectively.

Lemma 4. The PDF of the SINR at 𝑈𝑓 , i.e., 𝛾𝑓 , is given by

𝑓𝛾𝑓 (𝑥) =
𝜃W𝑓

(
𝑥𝜃W𝑓

𝜃V𝑓

)𝛼𝑓 (𝑥𝜃W𝑓

𝜃V𝑓
+ 1
)𝜈𝑓

𝜃V𝑓 𝐵(𝑘V𝑓 , 𝑘W𝑓
) , 𝑥 > 0 (12)

where 𝐵 (· , ·) is the Euler Beta function, 𝜈 𝑓 = −(𝑘V𝑓 + 𝑘W𝑓
),

𝑘V𝑓 =
𝜇2V𝑓

𝜇
(2)
V𝑓

−𝜇2V𝑓
, 𝜃V𝑓 =

𝜇
(2)
V𝑓

−𝜇2V𝑓
𝜇V𝑓

, 𝑘W𝑓
=

𝜇2W𝑓

𝜇
(2)
W𝑓

−𝜇2W𝑓

, and

𝜃W𝑓
=

𝜇
(2)
W𝑓

−𝜇2W𝑓

𝜇W𝑓

, with 𝜇V𝑓 = 𝜌 (𝜁𝑖,𝑓 𝜇𝑍𝑖,𝑓 + 𝜁𝑖′,𝑓 𝜇𝑍𝑖′,𝑓 ), 𝜇
(2)
V𝑓 =

𝜌2 (𝜁 2𝑖,𝑓 𝜇
(2)
𝑍𝑖,𝑓

+2𝜁𝑖,𝑓 𝜁𝑖′,𝑓 𝜇𝑍𝑖,𝑓 𝜇𝑍𝑖′,𝑓 +𝜁 2𝑖′,𝑓 𝜇
(2)
𝑍𝑖′,𝑓

), 𝜇W𝑓
= 𝜌 (𝜁𝑖,𝑐𝜇𝑍𝑖,𝑓 +

𝜁𝑖′,𝑐𝜇𝑍𝑖′,𝑓 ) +1, and 𝜇
(2)
W𝑓

= 2𝜇𝑍𝑖,𝑓 (𝜌2𝜁𝑖,𝑐𝜁𝑖′,𝑐𝜇𝑍𝑖′,𝑓 +𝜌𝜁𝑖′,𝑐 +𝜌𝜁𝑖,𝑐 ) +
𝜌2𝜁 2𝑖′,𝑐𝜇

2
𝑍𝑖′,𝑓

+ 𝜌2𝜁 2𝑖,𝑐𝜇2𝑍𝑖,𝑓 + 1.

Proof. The expression in (4) can be rewritten as 𝛾𝑓 =
V𝑓
W𝑓

,
where V𝑓 = 𝜌𝜁𝑖,𝑓 𝑍𝑖,𝑓 + 𝜌𝜁𝑖′,𝑓 𝑍𝑖′,𝑓 and W𝑓 = 𝜌𝜁𝑖,𝑐𝑍𝑖,𝑓 +
𝜌𝜁𝑖′,𝑐𝑍𝑖′,𝑓 + 1, with 𝑍𝑖,𝑓 and 𝑍𝑖′,𝑓 both being Gamma RVs.
The rest of the proof is similar to that of Lemma 3. ■

In Fig. 2, we compare the analytical and simulated PDFs
and CDFs of SINRs of network users. The close alignment
between the analytical approximations and Monte Carlo
(MC) simulations affirms the accuracy of the derived expres-
sions. Additionally, we conduct the Kolmogorov-Smirnov (KS)
goodness-of-fit test, however, the details are omitted due to
space constraints.
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IV. Performance Analysis
A. Ergodic Rate (ER)

The ER of the edge user is defined as

R𝑓 =

∫ ∞

0
log2 (1 + 𝑥) 𝑓𝛾𝑓 (𝑥)𝑑𝑥, (13)

where 𝑓𝛾𝑓 (𝑥) is the PDF of 𝛾𝑓 in (12). Noting that the PDF
of 𝛾𝑓 is a Beta prime distribution, the ER of the edge user is
derived in the following theorem.

Theorem 1. In the proposed system model, the ER of the edge
user is given by

R𝑓 =
1

ln(2)Λ𝑓
𝐺

3,2
3,3

(
𝜃W𝑓

𝜃V𝑓

∣∣∣∣ 0, 1 − 𝑘W𝑓
, 1

0, 0, 𝑘V𝑓

)
, (14)

where 𝐺𝑚,𝑛𝑝,𝑞

(
𝑧

∣∣∣ 𝑎1, . . . , 𝑎𝑝
𝑏1, . . . , 𝑏𝑞

)
is the Meijer G-function, Λ𝑓 =

𝐵(𝑘V𝑓 , 𝑘W𝑓
) Γ(𝜅𝑓 ) and 𝜅𝑓 = 𝑘V𝑓 + 𝑘W𝑓

.

Proof. Substituting the PDF of 𝛾𝑓 in (12) into (13), we obtain

R𝑓 =
𝜃W𝑓

𝜃V𝑓 𝐵(𝑘V𝑓 , 𝑘W𝑓
)

∫ ∞

0
log2 (1 + 𝑥)

(
𝑥𝜃W𝑓

𝜃V𝑓

)𝛼𝑓

×
(
1 +

𝑥𝜃W𝑓

𝜃V𝑓

)𝜈𝑓
𝑑𝑥. (15)

From [10, Eq. (11)] and [10, Eq. (10)], the logarithmic and
power functions can be expressed in terms of a Meijer

G-function, i.e., log2 (1 + 𝑧) = 𝐺
1,2
2,2

(
𝑧

∣∣∣ 1, 1
1, 0

)/
ln(2) and

(1 + 𝑧)𝜈 = 𝐺
1,1
1,1

(
𝑧

∣∣∣ 1 − 𝜈
0

)/
Γ(𝜈), respectively. Furthermore,

using the analytical continuation of the Meijer G-function,
the integral in (15) can be rewritten as

R𝑓 =
𝜃W𝑓

ln(2)𝜃V𝑓 𝐵(𝑘V𝑓 , 𝑘W𝑓
)Γ(𝜅𝑓 )

∫ ∞

0
𝐺

1,2
2,2

(
𝑥

∣∣∣∣ 1, 1
1, 0

)

×𝐺1,1
1,1

(
𝑥𝜃W𝑓

𝜃V𝑓

∣∣∣∣ −𝑘W𝑓

𝑘V𝑓 − 1

)
𝑑𝑥 . (16)

Finally, using the integral representation of the Meijer G-
function, we obtain (14). ■

To gain further insight, we express the high-SNR approx-
imation for the ER of the edge user as

R∞
𝑓 ≈ 1

ln(2)Λ
𝑓

𝐺
3,2
3,3

(
𝜃
𝑓

∣∣∣∣ 0, 1 − 𝑘Ṽ𝑓 , 1
0, 0, 𝑘V𝑓

)
, (17)

where Λ
𝑓

= 𝐵(𝑘V𝑓 , 𝑘Ṽ𝑓 ) Γ(𝜅𝑓 ), 𝜅𝑓 = 𝑘V𝑓 + 𝑘Ṽ𝑓 , and

𝜃
𝑓
=

𝜃Ṽ𝑓
𝜃V𝑓

. The approximate parameters, denoted as 𝑘Ṽ𝑓 and
𝜃 Ṽ𝑓 , can be computed using the first and second moment,
that is, 𝜇Ṽ𝑓 = 𝜌 (𝜁𝑖,𝑐𝜇𝑍𝑖,𝑓 + 𝜁𝑖′,𝑐𝜇𝑍𝑖′,𝑓 ) and 𝜇 (2)Ṽ𝑓

= 𝜌2 (𝜁 2𝑖,𝑐𝜇
(2)
𝑍𝑖,𝑓

+
2𝜁𝑖,𝑐𝜁𝑖′,𝑐𝜇𝑍𝑖,𝑓 𝜇𝑍𝑖′,𝑓 + 𝜁 2𝑖′,𝑐𝜇

(2)
𝑍𝑖′,𝑓

), respectively.

Likewise, the ER of the center users is defined as

R𝑖,𝑐 =
∫ ∞

0
log2 (1 + 𝑥) 𝑓𝛾𝑖,𝑐 (𝑥)𝑑𝑥, (18)

where 𝑓𝛾𝑖,𝑐 (𝑥) is the PDF of 𝛾𝑖,𝑐 in (11). The ER of the center
users can then be derived as follows.

Theorem 2. The ER for the center users is given by

R𝑖,𝑐 =
1

ln(2)Λ𝑖,𝑐
𝐺

3,2
3,3

(
𝜃W𝑖,𝑐

𝜌𝜁𝑖,𝑐𝜃𝑍𝑖,𝑐

∣∣∣∣ 0, 1 − 𝑘W𝑖,𝑐
, 1

0, 0, 𝑘𝑍𝑖,𝑐

)
, (19)

where Λ𝑖,𝑐 = 𝐵(𝑘𝑍𝑖,𝑐 , 𝑘W𝑖,𝑐
) Γ(𝜅𝑖,𝑐 ) and 𝜅𝑖,𝑐 = 𝑘𝑍𝑖,𝑐 + 𝑘W𝑖,𝑐

.

Proof. The proof closely follows that of Theorem 1. ■

Similar insights can be derived for the ER of the center
users as of the edge user, however, the details are omitted
due to space constraints.

B. Outage Probability (OP)

The OP for the edge user is defined as the probability that
the instantaneous SINR at the edge user to decode its own
message is below a certain threshold, and can be expressed
as P𝑓 = Pr (𝛾𝑓 < 𝛾𝑡ℎ𝑓 ), where 𝛾𝑡ℎ𝑓 = 2R𝑡ℎ𝑓 − 1 is the target
SINR with R𝑡ℎ𝑓 being the target rate for edge users. As
𝛾𝑓 ∼ 𝛽 ′

(
𝑘V𝑓 , 𝑘W𝑓

, 1, 𝜃V𝑓 /𝜃W𝑓

)
, and the CDF of a Beta prime

distribution is known to be an incomplete Beta function, the
OP for the edge user can be expressed as

P𝑓 =
Γ(𝑘V𝑓 + 𝑘W𝑓

)
Γ(𝑘V𝑓 )Γ(𝑘W𝑓

)𝐵𝜓𝑓 (𝑘V𝑓 , 𝑘W𝑓
), (20)

where 𝜓𝑓 =
𝜆𝑡ℎ𝑓 𝜃W𝑓

𝜃V𝑓 +𝜆𝑡ℎ𝑓 𝜃W𝑓

, and 𝐵𝑧 (· , ·) is the incomplete Beta
function. As the threshold (𝜆𝑡ℎ𝑓 ) tends towards infinity, the
incomplete Beta function in (20) converges to the Euler Beta
function, i.e., 𝐵𝜓𝑓 (𝑘V 𝑓 , 𝑘W 𝑓 ) → 𝐵(𝑘V 𝑓 , 𝑘W𝑓

).
Similarly, with regards to center users, the OP is defined

as the probability that the instantaneous SINR for decoding
the user’s own message or the message of the edge user falls
below a certain threshold. Mathematically, it can be expressed
as P𝑖,𝑐 ≈ Pr (𝛾𝑖,𝑐→𝑓 < 𝛾𝑡ℎ𝑓 ) + Pr (𝛾𝑖,𝑐→𝑓 > 𝛾𝑡ℎ𝑓 , 𝛾𝑐 < 𝛾𝑡ℎ𝑐 ),
where 𝛾𝑡ℎ𝑐 = 2R𝑡ℎ𝑐 − 1 is the target SINR with R𝑡ℎ𝑐 being
the target rate for center users, and the approximate symbol
is due to the fact that the detection sequence is not of fully
independent events. The first term in the sum expression,
denoted here onwards as P (1)

𝑖,𝑐 , takes on the same form as
that of OP for the edge user in (20), except for parameters,
i.e., 𝑘V𝑓 → 𝑘𝑍𝑖,𝑐 , 𝑘W𝑓

→ 𝑘W𝑖,𝑐,𝑓
, 𝜃V𝑓 → 𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐 , and 𝜃W𝑓

→
𝜃W𝑖,𝑐,𝑓

. Furthermore, let P (2)
𝑖,𝑐 = Pr (𝛾𝑖,𝑐→𝑓 > 𝛾𝑡ℎ𝑓 , 𝛾𝑐 < 𝛾𝑡ℎ𝑐 ),

then, the second term in the sum expression becomes

P (2)
𝑖,𝑐 = 𝐼𝜓𝑖,𝑐→𝑓 (𝑘W𝑖,𝑐,𝑓

, 𝑘𝑍𝑖,𝑐 ) 𝐼𝜓𝑖,𝑐 (𝑘𝑍𝑖,𝑐 , 𝑘W𝑖,𝑐
), (21)

where 𝜓𝑖,𝑐→𝑓 =
𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐

𝜌𝜁𝑖,𝑓 𝜃𝑍𝑖,𝑐 +𝜆𝑡ℎ𝑓 𝜃W𝑖,𝑐,𝑓
, 𝜓𝑖,𝑐 =

𝜆𝑡ℎ𝑐 𝜃W𝑖,𝑐
𝜌𝜁𝑖,𝑐𝜃𝑍𝑖,𝑐 +𝜆𝑡ℎ𝑐 𝜃W𝑖,𝑐

,
and 𝐼𝑧 (· , ·) is the regularized incomplete Beta function. The
OP for the center user is then given by P𝑖,𝑐 ≈ P (1)

𝑖,𝑐 +P (2)
𝑖,𝑐 . Fur-

ther improvement in approximation can be made by making
use of the fact that outage performance cannot be better than



5

Fig. 3: Outage probability of network users versus 𝑃𝑡 for equal amplitude
coefficients (𝛽𝑡 = 𝛽𝑟 ) , and element assignments (K1

𝑅 = K2
𝑅 ) , when 𝐾 > 0.

that of the interference-free noise-only case. Therefore, the
final expression of the OP can be expressed as the maximum
of the two cases, i.e., P𝑖,𝑐 ≈ max{P𝑖,𝑐 , Pr (𝛾𝑐 < 𝛾𝑡ℎ𝑐 )}.

V. Numerical Results

In this section, we present numerical results to validate
the accuracy of the derived expressions and gain insight
into the performance of the proposed system model. The
simulation parameters are as follows: the network operates
with a bandwidth of 𝐵 = 1 MHz; AWGN power is configured
as 𝜎2 = −174 + 10 log10 (𝐵) (dBm) with a noise figure 𝑁𝑓 of
12 dB; the power allocation factors for NOMA users, U𝑐𝑖 and
U𝑓 , are set to 𝜁𝑖,𝑐 = 0.3 and 𝜁𝑓 = 0.7, respectively; Nakagami-
𝑚 fading parameters are set to 𝑚𝑖,𝑢 = 1 and 𝑚𝑖,𝑅 = 𝑚𝑅,𝑢 = 2
for LOS and nLOS links, respectively.

In Fig. 3, we assess the OP for all users under various trans-
mit power levels (𝑃𝑡 ) and system configurations, with fixed
thresholds 𝜆𝑡ℎ𝑓 = 𝜆𝑡ℎ𝑐 = 0 dB. The STAR-RIS assisted CoMP-
NOMA network demonstrates significant OP enhancements
for U𝑓 , attributed to the formation of vLOS paths. U𝑐1 and
U𝑐2 show marginal improvements due to their predominant
reliance on direct links from their corresponding BS. Notably,
in the absence of CoMP, U𝑓 contends with elevated ICI and
consistently high outage probabilities across all power levels.

The impact of the number of RIS elements on the ergodic
rate of the network is shown in Fig. 4. We observe that the
ergodic rate increases with the number of RIS elements as the
RIS elements amplify the channel links. Again, the STAR-RIS
assisted CoMP-NOMA network outperforms other networks,
due to substantial diversity gains at U𝑓 .
Finally, in Fig. 5, we demonstrate the effect of varying

the RIS element assignments (K1
𝑅, K2

𝑅) to BS1 and BS2,
respectively, and the amplitude adjustments (𝛽𝑡 , 𝛽𝑟 ) in an
exhaustive fashion. Notably, the ergodic rate peaks when
𝛽𝑡 > 𝛽𝑟 as a result of close proximity of the STAR-RIS
to U𝑓 , located within the transmission region of the RIS,
thereby defining the optimal configuration for the network.
Investigating optimization techniques for STAR-RIS resources
can provide further insights to enhance spectral efficiency.

VI. Conclusion

In this letter, we proposed a practical analytical frame-
work designed for STAR-RIS assisted CoMP-NOMA under
Nakagami-𝑚 fading. By using a moment-matching based

Fig. 4: Ergodic rate comparison of the STAR-RIS assisted CoMP-NOMA
system for different system configurations.

Fig. 5: Ergodic rate for varying RIS element assignments (K1
𝑅, K

2
𝑅 ) and

amplitude adjustments (𝛽𝑡 , 𝛽𝑟 ) , with 𝑃𝑡 = −10 dBm.

Gamma approximation, we systematically derived expres-
sions for ergodic rate and outage probability for all the
users. To gain deeper insights into network optimization, an
exhaustive iterative analysis was performed to maximize data
rates.
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