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Abstract. Table detection and structure recognition is an important
component of document analysis systems. Deep learning-based trans-
former models have recently demonstrated significant success in various
computer vision and document analysis tasks. In this paper, we intro-
duce PyramidTabNet (PTN), a method that builds upon Convolution-
less Pyramid Vision Transformer to detect tables in document images.
Furthermore, we present a tabular image generative augmentation tech-
nique to effectively train the architecture. The proposed augmentation
process consists of three steps, namely, clustering, fusion, and patching,
for the generation of new document images containing tables. Our pro-
posed pipeline demonstrates significant performance improvements for
table detection on several standard datasets. Additionally, it achieves
performance comparable to the state-of-the-art methods for structure
recognition tasks.

Keywords: deep learning · image transformer · image processing · data
augmentation · table augmentation · table segmentation · table detection
· structure recognition

1 Introduction

Table detection and structure recognition are crucial tasks that have numer-
ous applications in fields such as data extraction, document summarization, and
information retrieval. Tables play a significant role in presenting data in a struc-
tured format, and they are frequently used in a variety of document types, such
as research papers, reports, and financial statements. The automatic detection
and recognition of tables and their structures is a complex task that requires the
integration of several computer vision and pattern recognition techniques.

The most common approach to table detection is to use supervised machine
learning techniques [2, 12, 14, 22, 24, 28, 31, 33] to learn to identify tables based
on features extracted from the input images. These features may include visual
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features, such as the presence of lines and boxes, as well as layout features,
such as the position and size of elements within the document. These supervised
machine-learning approaches have shown to be effective at detecting tables, but
they often rely on large high-quality datasets and can be sensitive to variations
in the input images.

Once a table has been detected, the next step is often to recognize its struc-
ture and extract its contents. This can be a complex task, as tables can vary
significantly in terms of their layout, formatting, and content. Some approaches
to table structure recognition involve analyzing the visual layout of the table,
such as the presence and positioning of lines, boxes, and other visual elements.
Other approaches may involve analyzing the semantic structure of the table, such
as the relationships between different cells and the meaning of their contents.

Detecting and recognizing tables in document images is challenging due to
various obstacles. These include inconsistent table structures, poor image qual-
ity, complex backgrounds, data imbalance, and insufficient annotated data. In-
consistent table structures result from varying layouts and structures, making
it difficult for models to identify tables accurately. Poor image quality, such as
blurring, distortion, and low resolution, can also impede recognition as well.

Overall, deep learning techniques present a promising solution for the accu-
rate detection and recognition of tables in document images. However, current
techniques are faced with a major challenge, which is the bias arising from image
variability. This bias is a result of the complex and diverse nature of document
analysis, despite the use of large amounts of training data. As such, there is a
need for further research to overcome this challenge and improve the accuracy
of document analysis techniques.

In this work, we have developed an end-to-end approach for table recognition
in scanned document images that leverages the performance of convolution-less
Pyramid Vision Transformer [35]. We also propose and integrate a novel tabular
image generative augmentation technique to ensure that different types of table
structures are uniformly learned by the model to address the challenges posed
by the variability in table appearance and complex backgrounds.

The results of our approach demonstrate that it outperforms many of the
recent works in this field, such as HybridTabNet [22], CasTabDetectoRS [14],
and Document Image Transformer [18], on a variety of benchmarks. This serves
as a measure of the effectiveness of our approach, as well as the value of the data
augmentation techniques that we have incorporated into our method.

The rest of the paper is organized as follows: Section 2 provides the literature
review and current advancements in table recognition using both CNNs and
transformers and an overview of novel data augmentation pipelines. Section 3
provides an explanation of the proposed architecture; each component of the
model is briefed in-depth. Section 4 provides an overview of the utilized datasets,
along with the data augmentation techniques employed. Section 5 provides a
comparison of our architecture against the current state-of-the-art along with
its analysis. Section 6 concludes this paper along with ideas for future work and
further enhancements.
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2 Related Work

Table understanding is an important aspect of document image analysis. Deep
learning-based approaches have been increasingly exploited to improve the gen-
eralization capabilities of table detection systems. This section aims to provide
a brief overview of some of these methods.

Among the initial deep learning approaches, Gilani et al. [12] proposed a
technique for table detection in which, document images are first subjected to
pre-processing before being fed into an RPN. This network is designed to identify
regions in the image that are likely to contain tables and later detected using
a CNN. Arif and Shafait [2] introduced a method to enhance table detection
by utilizing foreground and background features. The technique takes advantage
of the fact that most tables contain numeric data, and utilizes color coding to
differentiate between textual and numeric information within the table.

Traditional CNNs have a fixed receptive field, making table recognition chal-
lenging when tables are present in varying sizes and orientations. Deformable
convolution [6], on the other hand, adapts its receptive field to the input, en-
abling the network to accommodate tables of any layout through customization
of the receptive field. Employing a unique combination of Deformable CNN and
Faster R-CNN, Siddiqui et al. [31] presented a novel strategy for table detection
in documents that leverages the ability to recognize tables with any arrangement.

Qasim et al. [25] proposed using graph neural networks for table recogni-
tion tasks, combining the benefits of convolutional neural networks and graph
networks for dealing with the input structure. Khan et al. [16] propose a deep
learning solution for table structure extraction in document images, using a bi-
directional GRU to classify inputs. Khan et al. [17] presented TabAug, a novel
table augmentation approach that involves modifying table structure by replicat-
ing or deleting rows and columns. TabAug showed improved efficiency compared
to conventional methods and greater control over the augmentation process.

Prasad et al. [24] proposed CascadeTabNet, a table detection system built
upon Cascade Mask R-CNN HRNet framework and enhanced by transfer learn-
ing and image manipulation techniques. Nazir et al. [22] presented HybridTab-
Net, a pipeline comprising two stages: the first stage extracts features using
the ResNeXt-101 network, while the second stage uses a Hybrid Task Cascade
(HTC) to localize tables within the document images.

Zheng et al. [36] proposed Global Table Extractor (GTE), a technique that
detects tables and recognizes cell structures simultaneously, using any object
detection model. GTE-Table, a new training method, is used to improve table
detection by incorporating cell placement predictions. Raja et al. [27] presented
a novel object-detection-based deep learning model that is designed for efficient
optimization and accurately captures the natural alignment of cells within tables.
The author proposed a unique rectilinear graph-based formulation to enhance
structure recognition to capture long-range inter-table relationships.

Image transformers have garnered a lot of popularity in computer vision
and image processing tasks and recently, transformer-based models have been
employed for document analysis as well. Smock et al. [32] utilized DEtection
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Fig. 1. Model architecture of PyramidTabNet – A convolution-less Pyramid Vision
Transformer backbone is attached to a vanilla implementation of the Cascade Mask
R-CNN framework to detect the instances and bounding boxes of document tables and
their structural components.

TRansformer (DETR) [4] framework for table detection and structure recog-
nition tasks. Document Image Transformer [18] proposed by Xu et al. utilized
large-scale unlabeled images for document analysis tasks and achieved state-of-
the-art results in document classification as well as table recognition.

Leveraging the success of transformers in the field of document analysis, we
integrate a convolution-less transformer backbone with a vanilla Cascade Mask
R-CNN framework. The following section provides a comprehensive examination
of the end-to-end pipeline for table detection and structure recognition, including
a demonstration of how inputs are processed through the architecture.

3 PyramidTabNet: Methodology

3.1 Architecture

Building upon the superiority of Transformer models demonstrated by the Pyra-
mid Vision Transformer (PVT) [34] in dense prediction tasks, PyramidTabNet
utilizes the updated PVT v2 architecture [35] with a 3× 3 depth-wise convolu-
tion in its feed-forward network. The document image is first divided into non-
overlapping patches and transformed into a sequence of patch embeddings. These
embeddings are then infused with positional information and processed through
multiple stages of PVT to form the backbone of PyramidTabNet. The output
of the PVT v2 stage is reshaped to feature maps F1, F2, F3 and F4 with strides
of 4, 8, 16, and 32 respectively. Lastly, the feature pyramid {F1, F2, F3, F4} is
forwarded to a vanilla Cascade Mask R-CNN [3] framework to perform instance
segmentation as shown in Figure 1.
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Test Image Table Detection

Cropped Table

Fig. 2. Table detection pipeline – Instances of tables are detected on an input image
and cropped to extract the tabular region.

The proposed end-to-end pipeline can be categorized into two phases: table
detection and structure recognition. The details of each stage are discussed in the
following sections, along with an exemplary forward pass of the input through
the architecture.

Table Detection In a single feed-forward pass of the input image (a docu-
ment) to the model, the table detection module detects all instances of tables
in the input and performs bounding box regression. The detected bounding box
coordinates, in [xmin, ymin, xmax, ymax] format, are then used to extract all the
tables from the input, and intermediately saved. The bounding boxes are also
post-processed to exclude any overlapping detections and undergo sequential
expansion to align with the nearest table contour. Figure 2 shows the table
detection pipeline on a sample image from ICDAR 2013 [13].

Table Structure Recognition Detected tables are then passed on to the
structure recognition stage, which detects all instances of table columns, table
column headers, as well as cells. Overlapping bounding boxes of detected cells
are merged into a single cell on the basis of the region area. The cells spanning
multiple adjacent cells along its horizontal projection are marked as row identi-
fiers and assigned an identity to capture the row number. Using the structural
information of columns and the intersection of the generated cell projections with
the detected columns, the row structure is inferred. The overall table structure is
further processed by classifying the presence of cells in column and column head-
ers, and the predicted structure is written to an XML file in the same format as
in other state-of-the-art methods. Figure 3 shows the table structure recognition
pipeline on the extracted table from the detection pipeline.
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Fig. 3. Table structure recognition pipeline – Instances of cells, columns, and column
headers are detected and the row structure is inferred based on the intersection of
cell projections with the columns. The overall table structure is inferred based on the
positional relation of the cells with the detected columns and generated rows.

3.2 Augmentation Strategy

In this section, we describe the augmentation techniques utilized in our proposed
architecture, supplementing the data-hungry nature of transformers.

K-Means Clustering K-means clustering is an unsupervised learning algo-
rithm that is used to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, serving as a prototype
of the cluster. In the context of table images, the k-means method can be used
to group images in the form of vectors based on visual similarity, thus reducing
the overall variation in data that is fused together.

Fusion Splicing of distinct tables in horizontal and vertical fashion followed by
concatenation is collectively termed fusion in this paper. Vertical and horizontal
lines are detected using probabilistic Hough lines transform [7]. The median hor-
izontal and vertical set of line points in a sorted Hough lines array is selected as
the cutoff point to achieve horizontal and vertical splices of a table image, respec-
tively. The resultant images are then fed into an image resizing-concatenation
pipeline to generate a new table.

Figure 4 shows an exemplar pipeline of fusion. A batch of images (n = 2) is
randomly sampled from clusters formed in section 3.2 and the median horizontal
contour is selected as the cutoff point after detection of all possible lines, followed
by cropping the image to achieve the maximum area. Cropped images are then
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Fused table

Fig. 4. Generation of new table images – Vertical and horizontal contours are detected
on two randomly sampled table images from generated clusters. Tables are cropped to
the median positional contour and adjacently joined to produce a new table image.

resized along the horizontal axis so that they match in width before they are
concatenated to produce a new table image.

Patching Augmented tables generated as a result of fusion are lastly patched
onto existing dataset images. Figure 5 shows an exemplary pipeline of patching.
An image is randomly sampled from the training data along with its inverted
mask. The center of the largest area in the inverted mask is the point on which
a randomly sampled fusion-generated table is pasted on. Collectively, we refer
to this process as patching in this paper.

4 Experiments

In this section, we start with an introduction to the datasets utilized to demon-
strate the efficacy of our architecture, followed by an introduction to the data
augmentation techniques employed in our method. Later, we analyze the results
on these datasets and compare them with state-of-the-art methods.

4.1 Datasets

In this section, we will discuss the datasets that are commonly used and publicly
available for table detection and table structure recognition.
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Generated document image

Fig. 5. Patching of table images – A document image along with its semantic informa-
tion is fed into the pipeline and the best patch point is computed for the fused table
to be pasted on in order to generate a new training sample.

ICDAR 2013 The ICDAR 2013 [13] dataset consists of 150 tables, with 75 from
EU documents and 75 from US Government documents. The tables are defined
by their rectangular coordinates on the page and can span multiple pages. The
dataset includes two sub-tasks: identifying the location of tables and determining
their structure. In our experiments, we will only utilize the dataset for structure
recognition.

ICDAR 2017-POD ICDAR 2017-POD [11] is a widely used dataset for evalu-
ating various table detection methods. It is significantly larger than the ICDAR
2013 table dataset, containing a total of 2,417 images that include figures, ta-
bles, and formulae. This dataset is typically divided into 1,600 images with 731
tabular areas for training and 817 images with 350 tabular regions for testing.

ICDAR 2019 cTDaR The cTDaR [10] datasets provide separate tracks, both
for table detection and table structure recognition. Track A, which targets the
task of table detection, is further divided into archival documents and modern
documents. In this paper, we focus on modern documents where table annota-
tions are provided for each image. The modern subset consists of 600 training
and 240 test images, which contain a broad variety of PDF files. Variability in
the images is further enhanced by supplementing English documents with Chi-
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nese documents, both of various formats, including scanned document images,
digitally composed documents, etc.

Marmot The Marmot [8] dataset is a collection of 2,000 PDF pages that in-
cludes a net balance of positive and negative samples. It features a diverse range
of table types, including ruled and non-ruled, horizontal and vertical, and tables
that span multiple columns. The dataset also includes tables that are found in-
side columns. For evaluation, we utilized the corrected version of this dataset,
as in [28], which contains 1,967 images.

UNLV The UNLV [29] dataset is a widely recognized collection of document
images in the field of document analysis, which includes a total of almost 10,000
images. However, only a subset of 427 images contains tables, and in the exper-
iments, only those images with tabular information were used.

TableBank TableBank [19] proposed an approach for automatically creating
a dataset using weak supervision, which generates high-quality labeled data for
a diverse range of domains such as business documents, official filings, research
papers, and others, making it highly useful for large-scale table recognition tasks.
This dataset is comprised of 417,234 labeled tables, along with their correspond-
ing original documents from various domains.

PubLayNet PubLayNet [37] is a high-quality dataset designed for document
layout analysis. The dataset is composed of 335,703 training images, 11,245 vali-
dation images, and 11,405 testing images. For table detection, only those images
containing at least one table were used, resulting in a total of 86,460 images.
The evaluation metrics used in this dataset follow the COCO [20] evaluation
protocol, rather than precision, recall, and F1-score, as is used in other table
detection datasets.

4.2 Settings

The experiments were implemented in PyTorch v1.11.0 and were conducted on
Google Colaboratory platform with a P100 PCIE GPU of 16 GB GPU memory,
Intel® Xeon® CPU @ 2.30GHz, and 12.72 GB of RAM. The MMDetection
toolbox was used to implement the proposed architecture.

Hyperparameters play a crucial role in determining the performance of a
deep learning model. They are adjustable settings that are not learned from the
data, and must be set before training begins. The choice of hyperparameters can
significantly impact the performance of a model, and their optimization is often
necessary to achieve the best results. In this paper, we selected hyperparameters
based on prior knowledge and empirical studies. This approach has been shown
to be effective in selecting reasonable values for the hyperparameters and can
save time and resources compared to exhaustive search methods.
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The model was optimized using the AdamW algorithm with a batch size
of 1 over 180,000 iterations. The learning rate was decayed using a linear decay
schedule, with the initial learning rate, betas, epsilon, and weight decay set to 1e-
4/1.4, (0.9, 0.999), 1e-8, and 1e-4, respectively. Further studies can be conducted
to explore other hyperparameter settings to achieve even better results.

The data augmentation techniques described in Section 3.2 were implemented
in conjunction with the augmentation policies used to train the DETR [4] archi-
tecture. Two auto-augmentation policies were adopted during the training phase.
The first policy rescaled the shorter side of each image to a random number in
the set {480, 512, 544, 576, 608, 640, 672, 704, 736, 768} while maintaining the
aspect ratio. The second policy rescaled the image to a random number in the
set {400, 500, 600} before applying an absolute range cropping window of size
(384, 600). During the testing phase, the longer side of each image was rescaled
to 1024 while maintaining the aspect ratio.

5 Results & Analysis

In this section, we discuss the results of the proposed architecture on the datasets
introduced in Section 4.1 and compare them with state-of-the-art methods. We
also evaluate the efficacy of our augmentation pipeline by training the proposed
architecture using different augmentation methodologies.

To assess the effectiveness of the proposed tabular image generative aug-
mentation pipeline, the proposed architecture was trained using three distinct
methodologies:

1. Non-Augmented (NA): Training images are fed into the transformer
without any modifications.

2. Standard (S): Standard augmentation techniques such as variations in
brightness, exposure, contrast, jitter, etc. combined with strategies employed
in DETR [4].

3. Generative (G) (ours): Our proposed augmentation pipeline, which con-
sists of sequential clustering, patching, and fusion to generate new images in
combination with strategies employed in DETR [4].

5.1 Table Detection

Table 1 presents a summary of the table detection results on various datasets. It
does not include table detection performance comparison on PubLayNet and IC-
DAR 2019 cTDaR as they follow different evaluation criteria and are presented
separately. The model is initially trained on a conglomerate of training images
of PubLayNet, TableBank, and ICDAR 2019 cTDaR dataset. Additionally, the
document images generated by our augmentation technique are also included in
the initial training state. Following the strategy of other state-of-the-art meth-
ods, we fine-tune these weights on training images of each of the table detection
datasets for the computation of respective evaluation metrics.
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Table 1. Table detection performance comparison summary – All metrics are computed
using models fine-tuned on the training samples of respective datasets – NA: Non-
Augmented, S: Standard, G: Generative.

Dataset Method Precision Recall F1-Score

ICDAR 2017

POD

@ IoU = 0.8

CDeC-Net [1] 89.9 96.9 93.4

DeepTabStR [30] 96.5 97.1 96.8

YOLOv3 [31] 97.8 97.2 97.5

HybridTabNet [22] 87.8 99.3 93.2

PyramidTabNet (NA) 95.3 94.7 95.0

PyramidTabNet (S) 97.8 97.1 97.4

PyramidTabNet (G) 99.8 99.3 99.5

Marmot

@ IoU = 0.5

DeCNT [31] 94.6 84.9 89.5

CDeC-Net [1] 77.9 94.3 86.1

HybridTabNet [22] 88.2 91.5 89.8

CasTabDetectoRS [14] 96.5 95.2 95.8

PyramidTabNet (NA) 92.7 91.1 91.9

PyramidTabNet (S) 94.6 93.3 93.9

PyramidTabNet (G) 97.7 94.9 96.3

UNLV

@ IoU = 0.5

DeCNT [31] 91.0 94.6 92.8

CDeC-Net [1] 91.5 97.0 94.3

HybridTabNet [22] 96.2 96.1 95.6

CasTabDetectoRS [14] 92.8 96.4 94.6

PyramidTabNet (NA) 89.4 93.2 91.3

PyramidTabNet (S) 90.7 95.6 93.1

PyramidTabNet (G) 92.1 98.2 95.1

TableBank

(LaTeX & Word)

@ IoU = 0.5

Li et al. [19] 90.4 95.9 93.1

CascadeTabNet [24] 95.7 94.4 94.3

HybridTabNet [22] 95.3 97.6 96.5

CasTabDetectoRS [14] 98.2 97.4 97.8

PyramidTabNet (NA) 94.4 94.1 94.2

PyramidTabNet (S) 96.5 95.6 96.0

PyramidTabNet (G) 98.9 98.2 98.5

All the metrics in Table 1 are computed at the same IoU threshold for a single
multi-cell row (same dataset). In the evaluation of the ICDAR 2017-POD (Page
Object Detection) dataset, we achieved an F1-score of 99.5 on the detection of
the table class at 0.8 IoU threshold, pushing further the state-of-the-art metrics.
It should be noted that the results reported are after the inclusion of post-
processing techniques, as also observed in the original competition.
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Table 2. Table detection performance comparison on PubLayNet – Evaluation met-
rics follow the same protocol as in the COCO [20] detection challenge – NA: Non-
Augmented, S: Standard, G: Generative.

Method AP 0.5:0.95 AP 0.75 AP 0.95

CDeC-Net [1] 96.7 - -

RobusTabNet [21] 97.0 97.8 92.0

DiT-L (Cascade) [18] 97.8 - -

PyramidTabNet (NA) 94.6 95.4 92.7

PyramidTabNet (S) 96.9 97.6 94.3

PyramidTabNet (G) 98.1 98.8 96.4

On the Marmot dataset, our model achieves the highest precision of 97.7 and
F1-score of 96.3 at 0.5 IoU threshold. The direct comparison of our results with
CasTabDetectoRS [14] and HybridTabNet [22] on the Marmot dataset proves
that we have pronounced the new state-of-the-art.

On the UNLV dataset, we achieved the highest recall of 98.2 at 0.5 IoU
threshold, indicating that our method correctly identified the highest number of
tables in the dataset. However, a decrease in precision was observed in compar-
ison to the performance on other datasets. We attribute this to the presence of
a large proportion of low-quality document images in the UNLV dataset. Our
model, which was trained on a diverse set of modern document images, may not
have the ability to fine-tune on the UNLV dataset as well as it does on other
modern datasets.

On the TableBank dataset, we achieved the highest precision, recall, and F1-
score over a 0.5 IoU threshold, achieving the new state-of-the-art. We evaluate
the TableBank dataset on both of its parts, LaTeX and Word document image
subsets, as we believe it signifies the robustness of the proposed method to
different types of modern document images.

The results of table detection on the PubLayNet dataset are shown in Table 2.
Utilizing the same evaluation protocol as the COCO detection challenge [20], our
method achieved the highest AP of 96.4 at 0.95 IoU threshold and a value of
98.1 for precision averaged over IoUs from 0.5 to 0.95 in steps of 0.05. These
results further push the state-of-the-art and demonstrate the fine-grained object
detection capabilities of our method.

The results of table detection on the ICDAR 2019 cTDaR dataset are shown
in Table 3. As the number of samples in this dataset is relatively small, it aims
to evaluate the few-short learning capabilities of models under low-resource sce-
narios. In Table 3, Our model performs better than the current baselines on all
fronts, while observing an increase of 0.9% in weighted F1-score over the recent
cascaded DiT-L [18], pushing further the state-of-the-art. It is worth noting that,
like DiT, metrics of IoU@{0.9} are significantly performant, indicating that the
proposed architecture has better fine-grained object detection capabilities.
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Table 3. Table detection performance comparison on ICDAR 2019 cTDaR – F1-scores
are computed at different IoU thresholds and the weighted F1-score is used to determine
the overall performance – NA: Non-Augmented, S: Standard, G: Generative.

Method IoU0.6 IoU0.7 IoU0.8 IoU0.9 wF1

CascadeTabNet [24] 94.3 93.4 92.5 90.1 90.1

HybridTabNet [22] 95.3 94.2 93.3 92.7 92.8

CDeC-Net [1] 95.9 95.6 95.0 91.5 94.3

GTE [36] 96.9 96.9 95.7 91.9 95.1

TableDet [9] - - 95.5 89.5 94.0

DiT-L (Cascade) [18] 97.9 97.2 97.0 93.9 96.3

PyramidTabNet (NA) 95.8 95.6 94.4 92.3 94.3

PyramidTabNet (S) 97.0 96.9 96.3 94.1 95.9

PyramidTabNet (G) 98.7 98.7 98.0 94.5 97.2

5.2 Structure Recognition

To evaluate the efficacy of our model on table structure recognition relative to
other state-of-the-art methods, each cell is marked into its corresponding location
in the detected table. The location of each cell is represented by [start row,
end row, start column, end column, box coordinates]. We employ the same IoU
threshold as in other methods to compute precision, recall, and F1-score.

The results of structure recognition on the ICDAR 2013 dataset are shown in
Table 4. We achieved an F1-score of 93.8, lacking just behind GuiderTSR [15],
which proved the efficacy of estimation of viable anchors for the detection of
rows and columns over naively applied object detection algorithms.

Table 4. Table structure recognition results on ICDAR 2013 – Performance of fine-
tuned models is compared without post-processing techniques as is done in the current
state-of-the-art method – NA: Non-Augmented, S: Standard, G: Generative.

Method Precision Recall F1-Score

SPLERGE [33] 96.9 90.1 93.4

TableNet [23] 92.2 89.9 91.0

GraphTSR [5] 88.5 86.0 87.2

TabStruct-Net [26] 92.7 91.1 91.9

GuidedTSR [15] 93.6 94.4 94.2

PyramidTabNet (NA) 91.1 90.4 90.7

PyramidTabNet (S) 91.4 92.6 92.0

PyramidTabNet (G) 92.3 95.3 93.8
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(a) (b) (c)

Fig. 6. Table detection examples with (a) incorrect detection, (b) unidentified table,
(c) partial detection.

(b)

(a)

Fig. 7. Structure recognition examples with (a) column error (b) row error.

5.3 Analysis

In this section, we analyze the detection outputs of the proposed architecture and
provide potential reasons for the incorrectly detected tables and their structural
components. It provides valuable insights into the strengths and limitations of
the model and will be useful for guiding future improvements to the model.

The three common types of errors in table detection are depicted in Figure 6.
In Figure 6a, our model mistakenly identifies the figure legend as a table due to
the presence of the x axis label above it. Conversely, in Figure 6b, the model fails
to detect a table that is very small in relation to the overall image size. Figure 6c
showcases the instance when the table size encompasses the entire image and our
model fails to detect it as a whole, instead recognizing it in parts. This behavior
is attributed to the use of patching augmentation techniques, which ensure the
presence of a minimum of two tables in a single document image.
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The error types in structure recognition are illustrated in Figure 7. The fig-
ure depicts the issues that arise from under-identified rows or over-identified
columns. As shown in Figure 7a, the failure of our model to detect the sec-
ond column header cell leads to a partially broken structure, demonstrating the
critical dependence of our structure recognition pipeline on correctly identifying
all column header cells. In Figure 7b, post-processing techniques result in the
merging of two cells from separate rows, leading to an extra row in the end table
structure. Despite this, post-processing techniques only counteract the model
predictions for a limited number of test images. Thus, it is retained as the final
stage of our proposed method after empirical evaluation.

6 Conclusion & Future Work

In this paper, we present PyramidTabNet, an end-to-end approach to table detec-
tion and structure recognition in image-based documents based on convolution-
less image transformers. To make up for the data-hungry nature of transformers,
PyramidTabNet employs a tabular image generative augmentation technique, re-
sulting in an architecture with fine-grained object detection capabilities. Conse-
quently, and through experimental results, we have shown that PyramidTabNet
outperforms several strong baselines in the task of table detection, especially at
a high IoU threshold, and achieves competitive and comparable performance on
table structure recognition tasks.

For future work, we will study the effects of training PyramidTabNet on even
larger datasets to further push the state-of-the-art results on table recognition.
We are also exploring the effects of integrating AI image upscaling on detected
table images to improve the evaluation metrics on the task of table structure
recognition, however, with an added latency overhead.
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