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Abstract—Reconfigurable intelligent surface (RIS)-assisted
aerial non-terrestrial networks (NTNs) offer a promising
paradigm for enhancing wireless communications in the era of
6G and beyond. By integrating RIS with aerial platforms such
as unmanned aerial vehicles (UAVs) and high-altitude platforms
(HAPs), these networks can intelligently control signal propa-
gation, extending coverage, improving capacity, and enhancing
link reliability. This article explores the application of deep
reinforcement learning (DRL) as a powerful tool for optimizing
RIS-assisted aerial NTNs. We focus on hybrid proximal policy
optimization (H-PPO), a robust DRL algorithm well-suited for
handling the complex, hybrid action spaces inherent in these
networks. Through a case study of an aerial RIS (ARIS)-aided
coordinated multi-point non-orthogonal multiple access (CoMP-
NOMA) network, we demonstrate how H-PPO can effectively
optimize the system and maximize the sum rate while adhering
to system constraints. Finally, we discuss key challenges and
promising research directions for DRL-powered RIS-assisted
aerial NTNs, highlighting their potential to transform next-
generation wireless networks.

I. INTRODUCTION

Sixth-generation (6G) wireless networks promise ubiqui-
tous and seamless connectivity, catering to the ever-growing
demands of an increasingly interconnected world. With the
rapid growth of data-intensive and delay-sensitive applications,
such as extended reality, autonomous driving, and the Internet
of Things (IoT), existing terrestrial networks face significant
challenges in terms of capacity, coverage, latency, and ef-
ficiency [1]. This necessitates a paradigm shift in network
design towards non-terrestrial networks (NTNs), specifically
aerial NTNs, which leverage a constellation of aerial plat-
forms, including satellites and high-altitude platforms (HAPs),
to augment and extend terrestrial network capabilities.

As envisioned by the Third Generation Partnership Project
(3GPP) and the International Mobile Communication (IMT)-
2030 framework, aerial NTNs will play a pivotal role in
achieving the ambitious connectivity goals of 6G and be-
yond by providing resilient and sustainable communication
infrastructure. Unmanned aerial vehicles (UAVs) are a key
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component of aerial NTNs, offering enhanced positioning
freedom, cost-effective deployment and maintenance, and the
ability to establish strong line-of-sight (LoS) links. UAVs can
operate as aerial base stations (ABSs), aerial relays (ARs), or
aerial user equipment (AUEs), each contributing to enhanced
network performance through a variety of use cases [2], [3].

Complementing the flexibility of NTNs is the transformative
technology of reconfigurable intelligent surfaces (RISs). RISs
are engineered surfaces comprising a large number of pas-
sive reflecting elements that can intelligently manipulate the
propagation of electromagnetic waves. By dynamically con-
trolling the phase shifts of these elements, RISs can enhance
desired signals, suppress interference, and reshape the wireless
channel to improve communication quality, offering promising
applications in coverage extension, interference mitigation,
and physical layer security enhancement [4], [5]. However,
traditional, fixed terrestrial RIS (TRIS) deployments often face
limitations in placement and reflection angles. Mounting RIS
on aerial platforms to form aerial RIS (ARIS) overcomes
these limitations. ARIS leverages the mobility of aerial ve-
hicles to achieve dynamic positioning and their altitude to
achieve panoramic full-angle reflection capabilities, thereby
optimizing signal reflection and maximizing communication
performance [6]. This flexibility allows ARIS to adapt effec-
tively to changing channel conditions, user distributions, and
environmental factors.

Optimizing the performance of ARIS requires sophisticated
control mechanisms to effectively manage the complex inter-
play of RIS configurations, available resources, trajectories of
aerial platforms, and dynamic channel conditions [7]. Deep
reinforcement learning (DRL) emerges as a powerful tool to
address these complexities. DRL algorithms can learn optimal
control policies through trial and error, adapting to changing
environments and maximizing long-term performance objec-
tives. Using deep neural networks, DRL can handle high-
dimensional state and action spaces, making it particularly
well-suited for the intricate optimization problems inherent in
NTNs [8]. Therefore, this article explores the application and
ability of DRL to enhance network performance in RIS-aided
aerial NTNs.

The rest of the article is organized as follows. The following
section provides an overview of RIS-assisted communications
in the context of aerial NTNs. We then motivate the usage of
DRL for network optimization and present a detailed descrip-
tion of proximal policy optimization (PPO). Next, a case study
showcasing the effectiveness of hybrid PPO (H-PPO) in an
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ARIS-aided coordinated multi-point non-orthogonal multiple
access (CoMP-NOMA) system is presented. We conclude by
discussing the key challenges and emerging research directions
for DRL-powered ARIS in the rapidly evolving landscape of
future wireless networks.

II. RIS-AIDED AERIAL NTNS: AN OVERVIEW

We commence by providing an overview of RIS-assisted
communications within the context of aerial NTNs, high-
lighting their potential to revolutionize wireless networks
by exploring their advantages, key optimization aspects, and
potential use cases.

A. Advantages of Aerial RIS

ARIS presents significant advantages over TRIS due to its
deployment capabilities and better performance characteristics.
Unlike TRIS, which is confined to fixed locations, ARIS can
be integrated with various aerial platforms, including UAVs,
HAPs, and even satellites, enabling flexible and dynamic
deployment. This mobility allows for on-demand coverage
extension, rapid deployment in disaster scenarios, and adaptive
positioning for optimal signal reflection. Moreover, the aerial
nature of ARIS facilitates 360° panoramic full-angle reflection,
surpassing the typical 180° half-space limitation of TRIS
mounted on a building facade or any other vertical surface.

The elevated positioning of ARIS also leads to several sub-
stantial improvements in communication performance. Strate-
gic aerial positioning enables ARIS to reflect signals in a way
that establishes LoS links, leading to a much lower proba-
bility of signal blockage. This implies better channel quality,
resulting in improved data rates and increased reliability in
communication links between satellites, aerial platforms, and
ground users [9]. The combination of deployment flexibility
and superior channel characteristics makes ARIS a compelling
technology for future wireless networks, particularly in scenar-
ios requiring dynamic coverage optimization or rapid network
deployment.

B. An Optimization Perspective

Optimizing the performance of RIS-assisted aerial NTNs
requires a coordinated approach that considers the unique
characteristics of both the RIS and aerial platforms.

1) Passive Beamforming: RIS utilizes passive beamforming
to enhance desired signals and mitigate interference. This in-
volves dynamically adjusting the phase shifts of the reflecting
elements on the RIS to constructively combine desired signals
at the receiver while suppressing undesired signals. Thus, the
objective is to maximize the signal-to-interference-plus-noise
ratio (SINR) and achieve higher data rates.

2) Trajectory Control: The trajectories of aerial platforms
equipped with RIS need careful optimization to maximize
coverage, minimize path loss, and avoid obstacles. Trajectory
control involves determining the optimal flight paths, altitudes,
and orientations of UAVs or HAPs to ensure efficient signal
reflection and coverage for users. Factors such as user dis-
tribution, channel conditions, energy efficiency, and airspace
regulations must be considered [3].

3) Resource Allocation: Realizing the performance gains
of ARIS-assisted aerial NTNs necessitates efficient resource
allocation, which entails strategically assigning communica-
tion resources, such as power, bandwidth, and time slots,
to different network entities [7]. Factors like user demand,
channel conditions, quality of service (QoS) requirements, and
energy constraints need to be considered for efficient resource
utilization.

C. Use Cases of RIS in Aerial NTNs

The unique capabilities of RIS integrated with aerial NTNs
make it suitable for various use cases, as illustrated in Fig. 1.

1) Ubiquitous Connectivity for Remote IoT: ARIS, by
leveraging the flexibility and mobility of aerial platforms like
UAVs and HAPs, can extend connectivity to remote IoT
devices, even in areas lacking terrestrial infrastructure [10].
As shown in Fig. 1, a BS transmits a signal to a LEO
satellite, which relays it via inter-satellite links to another
RIS-equipped LEO positioned over the remote area. This
LEO reflects the signal to an RIS mounted on a HAP, which
directs it to the IoT devices on the ground. This ARIS
and satellite communication-enabled multi-hop link provides
reliable, low-latency connectivity to remote areas, supporting
crucial applications like smart agriculture and environmental
monitoring.

2) Enhanced Urban Coverage: Dense urban environments
often suffer from signal blockage and multipath fading, hin-
dering communication reliability and data rates. ARIS can be
strategically deployed to overcome these challenges, as shown
in Fig. 1. By reflecting signals from the BS or LEO satellites,
ARIS creates alternative signal paths, bypassing obstacles
like tall buildings and extending coverage to shadowed areas.
This dynamic positioning enables improved signal quality
and extended connectivity for users in challenging urban
environments.

3) High-Capacity Hotspots: High-density user scenarios,
such as stadiums or concert venues, require high-capacity
connectivity to meet the simultaneous data needs of numerous
users. ARIS can effectively address these demands by intelli-
gently reflecting and directing signals from BSs or other aerial
platforms towards the high-density area. Fig. 1 depicts multiple
ARISs hovering over a stadium, reflecting and focusing signals
from a BS to provide high-quality, high-capacity connectivity
to the dense user population.

4) Secure UAV Swarms: Secure and reliable communica-
tion is vital for UAV swarm operations, especially in sensitive
applications like surveillance, data collection, and disaster
response [11]. ARIS can significantly enhance the security
of UAV swarm communications by mitigating jamming and
eavesdropping attempts. Strategically positioned ARIS can
create focused beams toward the intended UAV swarm while
simultaneously creating nulls in the direction of potential
eavesdroppers or jammers. Fig. 1 shows how two strategically
positioned ARISs can protect a UAV swarm. One ARIS
amplifies the desired signal from the BS towards the swarm,
ensuring reliable communication, while the second ARIS
reflects a jamming signal from a malicious drone towards an
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Fig. 1. Illustrative use cases of RIS in aerial NTNs for enhanced connectivity, coverage, and security.

eavesdropper, thereby protecting the swarm’s communication
integrity.

III. DEEP REINFORCEMENT LEARNING FOR ENHANCED
RIS-ASSISTED AERIAL NTNS

In this section, we explore the application of DRL for opti-
mizing RIS-assisted aerial NTN communication. We motivate
the use of DRL, provide a detailed explanation of a state-of-
the-art DRL algorithm, and present a case study showcasing
the effectiveness of the proposed DRL-based solution.

A. Why DRL?

Reinforcement learning (RL), in essence, is the science of
decision making. In contrast to supervised learning, which
relies on labeled data, RL involves an agent learning to
make decisions through trial and error, interacting with an
environment and receiving rewards or penalties based on its
actions. The ultimate goal of any RL agent is to learn a policy
that maximizes its cumulative reward over time. This makes
RL particularly suitable for dynamic and complex systems,
where it is difficult or infeasible to pre-program optimal
behavior.

Deep reinforcement learning (DRL) enhances RL by in-
corporating deep neural networks as function approximators

which are capable of handling high-dimensional state and
action spaces, such as those found in complex wireless com-
munication systems. To understand the learning behaviour of
RL agents, it is essential to introduce the concepts of state
value, state-action value, and policy.

• State Value: The value of a state represents the expected
long-term reward the agent can achieve starting from that
state and following a specific policy. It quantifies the
goodness of being in a particular state.

• State-Action Value: The state-action value represents the
expected long-term reward when starting in a specific
state, taking a particular action, and then following the
given policy.

• Policy: A policy, denoted by πd for discrete policies and
πc for continuous policies, is a function that maps states
to actions. It dictates the behaviour of agent, guiding it
to choose actions based on the observed state aiming to
maximize the expected long-term reward.

Optimizing RIS-assisted aerial NTNs presents unique chal-
lenges due to the inherent complexity and dynamic nature
of these systems. The interplay of satellite movement, aerial
platform trajectories, RIS configurations, and resource al-
location strategies across high-dimensional state and action
spaces demands intelligent and adaptive control mechanisms.
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Fig. 2. Architecture of H-PPO for optimization of RIS-assisted aerial NTNs.

While conventional optimization techniques, such as convex
optimization, have been applied to wireless communication
problems, they often struggle to cope with the dynamic and
unpredictable nature of RIS-assisted aerial NTNs. These tech-
niques typically rely on accurate and instantaneous channel
state information (CSI) and involve solving computationally
intensive optimization problems, leading to significant over-
head and delays. This is particularly problematic in sce-
narios with mobile UAVs, where frequent updates to CSI
and resource allocation are necessary, further amplifying the
computational burden and impacting real-time performance.

DRL emerges as a powerful solution for addressing these
challenges. Unlike traditional optimization approaches, DRL
algorithms can efficiently learn and update control policies
online, adapting to the dynamic nature of these networks
where real-time adaptation is crucial. Among the various DRL
algorithms, PPO stands out as a highly effective choice. As
a classical policy gradient algorithm, PPO exhibits enhanced
stability and adaptability, making it well-suited for navigat-
ing the challenges posed by the dynamic environments of
RIS-assisted aerial NTNs. This adaptability stems from its
ability to adjust the policy update step size during training,
contrasting with conventional policy gradient algorithms that
rely on a fixed and often challenging-to-tune step size. PPO
further enhances stability and efficiency through several key
mechanisms, which will be explored in detail in the following
subsection. Additionally, we introduce H-PPO, an extension of
PPO specifically tailored for hybrid action spaces, a common
characteristic of RIS-assisted aerial NTNs.

B. Description of PPO & H-PPO

PPO is a policy gradient-based DRL algorithm acclaimed
for its simplicity, reliability, and efficiency. Unlike traditional
policy gradient methods, which often suffer from instability
due to large updates, PPO aims to improve the policy in a

more controlled manner; policy updates in PPO are bounded
by a trust region enacted by a surrogate objective function,
preventing drastic changes that could destabilize the learning
process.

PPO achieves stable and efficient learning through several
key mechanisms. To mitigate the high variance associated
with traditional policy gradient methods, PPO employs a
clipped surrogate objective function, ensuring stability by
keeping updates within a defined trust region achieved through
clipping of the probability ratio between new and old policies.
PPO further boosts data efficiency by performing multi-epoch
updates on each sampled batch, allowing the agent to extract
more knowledge from experiences and accelerate overall learn-
ing. Furthermore, PPO makes use of the advantage function,
which estimates the relative benefit of taking a specific action
compared to the average action at a given state. By prioritizing
actions with higher advantages, PPO focuses on learning from
the most rewarding experiences, leading to faster convergence
towards an optimal policy. Lastly, PPO employs experience
replay, a common technique in DRL, where past interactions
are stored in a memory buffer and randomly sampled during
training. This reduces data correlation and improves learning
stability by preventing the algorithm from becoming overly
biased towards recent experiences.

Traditional RL algorithms, such as deep Q-networks (DQN)
and deep deterministic policy gradient (DDPG), are primarily
designed for either purely discrete or purely continuous action
spaces. However, in the context of RIS-assisted aerial NTNs,
we need to control both discrete actions, such as aerial
maneuvers, and continuous actions, like precise adjustments
of power control levels and RIS phase shifts.

Applying DQN directly to this scenario would require
discretizing the continuous actions, resulting in an impracti-
cally large action space that would hinder convergence and
make learning inefficient. Similarly, while DDPG can handle



5

Near

user

Near user

ARIS

Far user

Signal

blockage

Desired signal Interfering signal

Interference-

cancelling signal
Reflected signal

Coordinating BS
Non-coordinating

BS

Fig. 3. System model of ARIS-assisted CoMP-NOMA network.

continuous actions, it may not be ideal for the hybrid action
spaces in RIS-assisted aerial NTNs. DDPG can also exhibit
instability when dealing with the complex, non-linear rela-
tionships between trajectories, RIS configurations, and com-
munication performance, especially in dynamic environments
with changing channel conditions.

To overcome this challenge, we employ H-PPO, as illus-
trated in Fig. 2. H-PPO extends the standard PPO frame-
work by incorporating multiple output heads, allowing for
simultaneous optimization of both discrete and continuous
actions without resorting to excessive discretization. A shared
critic network provides a common performance benchmark for
both discrete and continuous actions by evaluating the value
function for all states. The state encoding network processes
the input state information from the sampled batch, creating a
shared representation that is then fed to two separate actor
heads: one dedicated to discrete actions and the other to
continuous actions. While both actors interact with the same
environment, their optimization occurs independently. Each
actor utilizes its own distinct objective function, resulting in
separate policy gradients tailored to its specific action type.

C. Case Study: DRL-Enabled ARIS-Assisted CoMP-NOMA

Building upon the evolution of cellular networks, coordi-
nated multi-point (CoMP) techniques have been standardized
to address inter-cell interference and spectrum limitations.
Non-orthogonal multiple access (NOMA) further enhances
spectral efficiency by allowing multiple users to share the same
time-frequency resources through superposition coding of user
signals at the transmitter and successive interference cancel-
lation (SIC) at the receivers. CoMP-NOMA networks offer
synergistic advantages by combining interference management
through CoMP with spectral efficiency gains from NOMA.
When paired with ARIS, it presents a compelling scenario for

next-generation wireless networks with significant potential for
enhancing coverage, capacity, and reliability.

However, such an integrated system presents a complex
optimization problem due to the inherent coupling of control
variables, including the trajectory of aerial platforms, RIS
phase shifts, power allocation factors, and dynamic channel
conditions. Conventional methods often struggle to effectively
handle such coupled parameters, particularly in the context
of real-time adaptation to changing wireless environments.
As discussed earlier, DRL-based optimization provides an
efficient and adaptable approach to managing such scenarios.
The ability to learn and adapt to dynamic systems, handle
high-dimensional state and action spaces, and optimize without
explicit mathematical models makes it an excellent choice for
addressing these challenges.

In this subsection, we demonstrate how H-PPO effectively
manages the complexities of an ARIS-aided CoMP-NOMA
network and how it can optimally allocate resources to maxi-
mize network sum rate.

1) System Description: As illustrated in Fig. 3, we consider
a downlink CoMP-NOMA network with both TRIS and ARIS.
Three BSs are present, two of which utilize CoMP to serve
a far user (FU) and are aided by the ARIS, whereas the
third non-CoMP BS transmits to its own near user (NU),
generating interference for the FU. We assume that direct
links from the coordinating BSs to the FU are obstructed by
obstacles, emphasizing the critical role of ARIS in establishing
reliable communication. The signal from the non-CoMP BS
to the ARIS is neglected due to the double path loss inherent
in reflection links and the substantial propagation distance
between them. This setup emphasizes the practical challenge
of serving users in obstructed or shadowed locations while
also demonstrating ARIS’ ability to establish and maintain
dynamic LoS links.

All communication channels in the network are modeled
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using the Nakagami-m fading distribution with varying fading
parameter m, providing a flexible representation of diverse
channel conditions. Without loss of generality, we assume that
the NUs experience better channel conditions than the FU,
justifying the application of NOMA. For simplicity, we assume
perfect CSI knowledge is available at the central controller,
which acts as the DRL agent in this scenario. However, it
should be noted that imperfect CSI due to factors such as
ARIS jittering, atmospheric effects, and estimation errors is a
crucial challenge for practical deployments.

The objective is to maximize the cumulative reward, defined
as the network sum rate with penalties for violating opera-
tional constraints, over the UAV’s operational time, which is
discretized into time slots. To achieve this, the agent learns
to control the UAV’s trajectory, the phase shifts of both the
ARIS and TRIS, and the NOMA power allocation factors. This
coordinated control is subject to constraints that ensure the
proper operation of SIC, maintain the UAV within a designated
area of interest, and keep the phase shifts of both RISs within
practical bounds.

2) Performance Evaluation: To evaluate the effectiveness
of H-PPO for optimizing the ARIS-assisted CoMP-NOMA
network, we conduct simulations using the following param-
eters unless stated otherwise. Each of the three BSs has
a transmit power of 15 dBm and serves user equipment
distributed on a grid of 150x150 m2. The ARIS is initially
positioned at the center of this grid. Additionally, the system
is assumed to be operating with a bandwidth of 10 MHz at a
carrier frequency of 2.4 GHz.

In Fig. 4, we evaluate the average cumulative reward
achieved by the DRL agent across training episodes, showcas-
ing the convergence behavior of various DRL configurations.
Both PPO and H-PPO, under different system configurations,
demonstrate stable convergence, reaching a plateau in cumu-
lative reward as training progresses. Notably, H-PPO with co-
ordinated phase shift control of both ARIS and TRIS achieves
the highest average cumulative reward. This underscores the
effectiveness of jointly optimizing UAV trajectory, and passive
beamforming to maximize network sum rate. Moreover, the H-
PPO configuration outperforms PPO with a fixed ARIS and
PPO without ARIS, highlighting the importance of dynamic
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ARIS positioning for establishing optimal LoS links.

Fig. 5 illustrates the impact of the number of reflecting
elements in both ARIS and TRIS on the achievable network
sum rate. To benchmark the DRL algorithms against the
optimal solution, we perform a brute-force search over all
possible combinations of UAV positions and RIS phase shifts,
which provides a performance upper bound. As the number of
elements increases, the achievable sum rate generally improves
due to enhanced beamforming capabilities. As can be ob-
served, H-PPO achieves near-optimal performance but deviates
from the optimal solution as the number of elements increases
due to the larger action space, which is harder for DRL agents
to optimize. Comparatively, PPO with fixed ARIS and H-PPO
with random ARIS phase shifts lag behind H-PPO.

Fig. 6 shows the impact of reward function design on the
network sum rate. We explored the following reward function
designs.

• Sum rate reward: Though intuitive for maximizing sum
rate, this approach leads to suboptimal performance. The
agent prioritizes momentarily high sum rates but may violate
operational constraints, like the UAV leaving the designated
area or assigning power allocation factors that hinder SIC.

• Penalized sum rate reward: This design incorporates penal-
ties for constraint violations and encourages the agent to
balance sum rate maximization with constraint adherence.

• Multi-objective rewards: Agent optimizes multiple objec-
tives simultaneously, each with a distinct reward function.
This allows exploration of trade-offs between conflicting
goals, such as achieving high sum rates while maintaining
user fairness.

• Compound rewards: Unlike multi-objective rewards, this
design combines multiple reward signals into a single func-
tion through weighted sums, which simplifies the learning
process.

Interestingly, the highest sum rate is achieved by a com-
pound reward function that integrates sum rate, energy effi-
ciency, and UAV trajectory stability into a single reward signal,
suggesting that holistic reward designs can be more effective.
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D. Complexity Analysis

Computational complexity is of critical importance for any
algorithm, as it dictates its eventual real-world deployment.
For H-PPO and DRL algorithms in general, the complexity
is largely determined by the size of the neural networks.
The overall complexity can be approximated as O[n2(Qs +
Qd + Qc)], where n represents the number of neurons in
each layer of the state encoding, discrete, and continuous
actor networks, and Qs, Qd, and Qc denote the number of
layers in each respective network. The complexity increases
quadratically with the number of neurons and linearly with
the number of layers. The actual computational cost depends
on various factors, including hardware specifications, software
implementations, and hyperparameter settings.

Mathematically analyzing the convergence of H-PPO is
challenging due to the inherent complexities of neural net-
works and their dependence on various parameters. However,
we empirically verified convergence by monitoring the aver-
age cumulative reward over numerous training episodes, as
shown in Fig. 4. Stable convergence, indicating successful
learning, was observed as the reward reached a plateau. This
validation provides confidence in the effectiveness of H-PPO
in learning near-optimal policies in a complex environment,
such as the one in our case study. It is important to note that
the convergence speed drastically depends on the choice of
hyperparameters, such as the learning rate, clipping parameter,
and discount factor, and may require extensive tuning to
achieve optimal performance.

IV. CHALLENGES AND FUTURE DIRECTIONS

While RIS-assisted aerial NTNs hold immense potential,
numerous challenges and future research directions need to
be addressed to fully unlock their capabilities and enable
widespread adoption in next-generation wireless networks.

A. Algorithmic Challenges

The application of DRL to optimize RIS-assisted aerial
NTNs presents several algorithmic challenges that require
further research. Model-free DRL algorithms like DDPG and
PPO often exhibit sample inefficiency, particularly in complex

scenarios like aerial NTNs where they require numerous
interactions with the environment to learn effective state-to-
action mappings. Improving sample efficiency through meta-
learning, transfer learning, or model-based RL offers a promis-
ing direction for enabling faster training and adaptability [12].

Designing effective reward functions remains another major
challenge. A reward function must balance multiple, often
conflicting objectives such as sum rate maximization, power
minimization, user fairness, and constraint satisfaction. This
typically requires many iterations of trial and error. Techniques
like intrinsic motivation or curiosity-driven exploration could
improve exploration strategies, especially for high-dimensional
action spaces. Additionally, DRL policies trained for specific
scenarios often struggle to generalize to new environments
with different user distributions, channel conditions, platform
configurations, or even minor changes in system parameters.
Consequently, scalability to larger networks with multiple
ARIS and diverse channel conditions becomes increasingly
difficult. Developing agents with improved generalization ca-
pabilities and effective transfer learning mechanisms is crucial
for ensuring adaptability and scalability of DRL-powered
solutions in real-world deployments.

B. Implementation Challenges

Several system-level challenges hinder the implementation
of ARIS in real-world scenarios. A fundamental issue lies
in the accurate control of the ARIS platform and its ele-
ments, particularly due to the inherent instability of non-
terrestrial networks and environmental perturbations [13].
Constant micro-movements and vibrations lead to phase shift
errors and misalignment of RIS elements. When combined
with the highly dynamic nature of aerial platforms, this in-
troduces Doppler effects and time-varying channel conditions
that complicate control mechanisms.

Imperfect CSI from estimation errors, quantization effects,
and feedback delays can severely degrade overall network per-
formance. Jittering motion of aerial platforms and atmospheric
conditions further exacerbate these imperfections, introducing
additional uncertainties in channel estimation. Real-world de-
ployments must also be resilient to adversarial attacks, neces-
sitating the development of robust beamforming algorithms
and mechanisms that address security vulnerabilities in RIS
control signaling and communication links. These systems
must be capable of mitigating susceptibility to jamming and
eavesdropping, and strong encryption techniques and sophisti-
cated intrusion detection systems could provide the necessary
safeguards.

Power consumption and energy efficiency remain major
limiting factors as well. Although RIS elements themselves
are passive, the overall energy expenditure of ARIS-assisted
aerial NTNs is significant, especially for battery-powered
UAVs. Careful planning is required for power consumption
related to propulsion, control, onboard signal processing, and
data transmission. Developing algorithms for optimal power
allocation strategies and energy-efficient communication is
essential for maximizing operational time and extending the
service region of UAVs in real-world applications.
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C. Emerging Directions

To advance ARIS capabilities and expand their applica-
tions, several promising research directions seem particularly
compelling. Integrating RIS-assisted aerial NTNs with edge
computing would bring computation and storage resources
closer to users, facilitating low-latency processing, localized
data management, and real-time data analytics for applications
like autonomous driving, drone traffic control, and distributed
AI [14]. This integration would support the increasing de-
mands of data-intensive and latency-sensitive applications.
Distributed learning techniques like federated learning could
enable collaborative learning across multiple RIS-equipped
platforms and users while protecting data privacy and en-
hancing scalability in large-scale deployments. This approach
offers a promising way to manage the increased complexity
and diverse environmental conditions encountered in vast NTN
deployments by enabling collaborative learning and adaptation
among distributed agents.

ARIS in integrated sensing and communication (ISAC) sys-
tems could synergistically optimize both communication and
sensing functionalities and improve performance to address
inherent trade-offs [15]. Lastly, the development of active
ARIS (AARIS), which incorporates amplifiers into reflecting
elements, can significantly enhance coverage, capacity, and
reliability. Although active metasurfaces offer promising po-
tential to overcome limitations of double path loss, the active
components would introduce new challenges in energy and
power management.

V. CONCLUSION

This article presented an overview of RIS-assisted aerial
NTNs, highlighting their transformative potential in shaping
the future of wireless communications. By combining the
flexibility of aerial platforms with the intelligent signal ma-
nipulation capabilities of RIS, these networks offer compelling
solutions to challenges in 6G and beyond. We motivated the
use of DRL as a powerful tool for optimizing the complex in-
teractions in these dynamic networks. Moreover, we presented
PPO and its multi-output extension, H-PPO, as effective DRL
algorithms capable of handling the hybrid action spaces often
encountered in RIS-assisted aerial NTNs. A case study on an
ARIS-aided CoMP-NOMA network demonstrated the superior
performance of H-PPO in maximizing network sum rate.

While challenges persist in practical implementation in
large-scale networks, channel estimation, robustness, and se-
curity, ongoing research actively explores solutions for im-
plementing DRL-powered RIS-assisted aerial NTNs. Scaling
DRL algorithms to manage multiple RIS-equipped aerial plat-
forms across diverse environmental conditions necessitates
further research, particularly in distributed learning and control
mechanisms.
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